skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bröder, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO 2 and CH 4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of 14 C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The 14 C-constrained estimate of export specifically from PP-C corresponds to only 17 ± 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 ± 8%), POC carried a much stronger signature of PP-C (63 ± 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative 14 C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming. 
    more » « less